

NED-LMD Near-Eye Display Measurement System

NED-LMD W200 Wide Field of View (WFOV) System

The NED-LMD product range delivers zero distortion, high-accuracy and high-speed test and characterization solutions for near-eye displays. Specifically designed for high volume production environments, the NED-LMD is the world's first integrated wide field of view (WFOV) spectroradiometric image quality analysis solution. The custom designed motorized focus lens covers 120° by 80° FOV. The system delivers high spectral purity based quality measurements for Virtual Reality, Augmented Reality, Mixed Reality and Heads-Up Displays (VR, AR, MR and HUDs) conforming to the standards being developed by the ICDM committee of the SID and IEC.

Design Validation and Quality Assurance of AR/VR/MR and Heads-Up Displays

Unmatched Speed and Accuracy

- Wide-angle field of view objective lens with 158° diagonal FOV covers complete device FOV
- 6-2 mm entrance pupil to emulate the human eye
- 0 to 4 diopters motorized focus lens for AutoFocus control
- High sensitivity, high dynamic range integrated GS-1290 spectroradiometer
- Luminance and color data from integral camera image tied to the spectroradiometer with precision alignment
- Patented SLR viewing system with integrated LED measurement spot projector and autocollimator
- 2° field-of-view aperture selection for eye foveal region correlation measurement spot

Original system calibration is performed in Gamma Scientific's NVLAP accredited laboratory (NVLAP Lab Code 200823-0) using NIST-traceable standards.

Measurement Parameters		
Center Color and Luminance		
Luminance Uniformity		
Color Uniformity		
Field of View (FOV)		
Slant Edge MTF		
Checkerboard Contrast		
FOFO Contrast		
Geometric Distortion		
Chromatic Aberration		
Color Gamut Area		
Ghost		
Flicker		

NED-LMD Near-Eye Display Measurement System

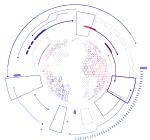
Critical Enabling Design Features

120° x 80° WFOV

Motorized Focus Lens
(0 to 4 Diopters focus range)

Emulates Human Eye 4mm entrance pupil; 1° and 2° foveal measurement spot

Spectral PrecisionHigh sensitivity, dynamic range spectroradiometer


Complete Test Tool Device characterization in a single measurement sequence

Key Application Areas

Ensuring repeatable and reproducible photometric and colorimetric measurement results

Virtual Reality

Heads-Up Displays

Augmented and Mixed Reality

Leveraging more than 40 years of expertise in field-deployed HUD measurement systems for US military aircraft including the F-16, F-18, B1B, C-17 and F-35, Gamma Scientific has unmatched depth of expertise in virtual image display measurement.

System Specifications		
Entrance Pupil Diameter	Fixed 6-2 mm	
Field of View	120° (H) and 80° (V)	
Object Distances	0 to 4 diopters	
Lens Barrel Diameter	60mm	
Instrument Resolution	50 pixels/degree	
Lens Distortion	< ±1%	
Image Sensor Resolution	24MP color, 6024 x 4024 pixels	
Image Sensor Pixel Size	3.91 μm x 3.91 μm	
Image Sensor Cooling	Two stage TEC	
Product Dimensions	26.5" x 8.8" x 12.0"	
Universal Input	100-240V AC, 3.0A	

Specifications are subject to change without notice.

© Gamma Scientific, All Rights Reserved

Rev. 06.24.21

